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The volume and position of permanent magnet material in a synchronous machine are optimized. The paper proposes a robust
optimization process which also accounts for geometric uncertainties. The results are also verified by stochastic collocation and show
a slightly worse optimum, which is however robust against manufacturing tolerances.
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I. INTRODUCTION

The price of permanent magnet (PM) material motivates op-
timization of PM synchronous machine (PMSM) designs. Stan-
dard optimization procedures bring improvements but partially
sacrifice the robustness of the original design e.g. with respect
to manufacturing tolerances. This may cause the promised
improvements to become unrealistic and thus irrelevant. This
paper accounts for such uncertainties during the optimization
process in order to come up with a robust optimized design.

In this paper a classical gradient-based optimization is used
to improve the robustness of a known machine design. A
large speed-up is obtained by using an affine decomposition of
the geometry. The robustification is implemented by efficient
evaluations of linear (or if necessary quadratic) approximations
such that high numerical costs as e.g. in [1] are avoided. Finally
the design is validated by using stochastic collocation [2].

II. MODELING AND DISCRETIZATION

The parameter p ∈ R3 is used to describe the location and
size of the PMs within the rotor of the machine, where p1 is the
width, p2 the height and p3 describes the central perpendicular
distance between the PM and the surface of the rotor, see Fig. 1.
The finite element (FE) approach leads to the system

(1)K(p)a(p) = jsrc(p) + jpm(p)

where p expresses the dependency of the FE system on the
magnet’s geometry and position within the machine’s cross-
section. To obtain a computationally fast model and to avoid
remeshing, an affine decomposition is introduced. Therefore, a
region around the PM (Fig. 1) is defined and decomposed into
L = 14 triangles [3]. We can rewrite (1) as

(2)K(p) = Kout +

L∑
k=1

θk(p)Kk,

where Kout is the system matrix for the domain outside the
box and Kk are the matrices corresponding to the triangular
subdomains. The p dependency of the system is now only
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Fig. 1: Geometry of the model problem, region for the affine
decomposition drawn with dashed lines.

present in the weight functions θk which are easy to evaluate.
The same decomposition is performed for the right hand side.

Nonlinear material behavior was frozen during the optimiza-
tion. However an extension is straightforward but might reduce
the benefit of the affine transformation due to the necessity of
reassembling some FE matrices Kk(a).

III. OPTIMIZATION

The target of the optimization is to minimize the required
PM material maintaining an effective value of the electromotive
force (EMF) Ê = 30.37V at synchronous speed of 1000
rpm; other quantities, e.g., cogging torque could be considered
similarly. The optimization problem under consideration is

min
p∈R3

J(p) := p1p2 + γmax(0, Ê − E(p)), (3)

where E(p) is the EMF for the configuration corresponding to
p and γ = 100 mm2/V is a weighting factor. Additionally we
introduce the design constraints p2 +p3 ≤ 15mm and 3p1 −
2p3 ≤ 50mm and the bounds for (1mm, 1mm, 5mm) ≤ p ≤
(∞,∞, 14mm). Note that for the computation of the EMF,
the solution of (1) is required. Hence, we have an optimization
problem with a PDE constraint. The parameter p is uncertain
due to the production process. Therefore, we introduce the
robust counter part (worst-case) associated with (3) as

(4)min
p ∈R3

max
δ ∈U

J(p+ δ), subject to max
δ ∈U

G(p+ δ) ≤ 0,



(a) Initial configuration:
p = (19.00mm, 7.00mm, 7.00mm),
Vol: 133mm2; EMF: 30.37V.

(b) Configuration after optimization:
p = (21.07mm, 2.98mm, 6.61mm),
Vol: 62.80mm2; EMF: 30.37V.

(c) Configuration after robust optimization:
p = (21.16mm, 3.88mm, 7.50mm),
Vol: 88.36mm2; EMF: 31.40V.

Fig. 2: Magnetic flux lines in the obtained PMSM designs.

where U := {δ ∈ R3 | ‖δ‖∞≤ 0.3mm} is the uncertainty
set and G(p) is the collection of all the constraints previously
introduced. To solve (4), the maximization problem can be
approximated by linear or quadratic models [6] such that exact
expressions can be inserted.

The cost functions in (3) and (4) are not smooth due to the
max operator. For the optimization we seek a smooth formula-
tion in order to apply derivative based methods. Therefore, the
expression is equivalently expressed in terms of a slack variable
ξ and the additional constraint Ê −E(p)−ξ ≤ 0 is introduced.
This optimization problem can then be solved by standard
methods. The computation of the derivatives is performed using
the sensitivity equations given by the derivatives of the weight
functions θk(p). To perform the numerical optimization, a Se-
quential Quadratic Programming (SQP) method using damped
BFGS updates as Hessian approximation is utilized. Combined
with an Armijo backtracking strategy using a `1− penalty
function, this method provides fast global convergence [4], [5].

Evolutionary algorithms were not considered since we aim
for the improvement of an existing design and those algorithms
require typically many model evaluations even when starting in
the neighborhood of the optimal design. In a straight forward
comparison the genetic algorithm took 45min (instead 2.37s
for SQP) and 14h in the robustified case (instead of 5.37s).

IV. NUMERICAL RESULTS AND ROBUSTNESS

The results obtained by the optimization process are outlined
in Fig. 2 and Table I. The volume of the PM can successfully be
reduced while the prescribed EMF Ê = 30.37V is maintained.
In the case of the robust optimization, also in the worst case
(see Table II), the prescribed EMF Ê is maintained, which
underlines the advantage of the method. The computation times
for the optimization procedures are 2 s and 4 s, respectively.
The results are verified by uncertainty quantification: the input
uncertainty is propagated through the model by using stochastic
quadrature [2]. A uniform distribution of δ on U is assumed,
such that p = p(i) + δ where p(i) with i ∈ {a,b, c}
corresponds to one of the three reference configurations; high-
order Gaussian quadrature with 103 nodes was applied to
compute the standard deviation of the EMF.

TABLE I: Comparison of the results obtained by the optimiza-
tion procedures. The optimal parameter, the associated volume
and the EMF are shown.

Configuration p (mm) Vol (mm2) EMF (V)
(a) Initial (19.00, 7.00, 7.00) 133.00 30.37
(b) Optimized (21.07, 2.98, 6.61) 62.80 30.37
(c) Robustified (21.16, 3.88, 7.50) 88.36 31.40

TABLE II: Comparison of the deviations obtained by worst-
case optimization and stochastic collocation.

Configuration Worst Dev. of EMF (V) Std. Dev. of EMF (V)
(a) Initial 0.80 0.30
(b) Optimized 1.27 0.43
(c) Robustified 1.04 0.36

V. CONCLUSION

The initial configuration has a poor performance but is
robust. The traditionally optimized one is better but very
sensitive and may even fail to achieve its nominal performance.
The robust optimization yields an improved design.
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